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~IERMOPHYSICAL PROCESSES IN ELECTRIC CONTACTS 

UPON PASSAGE OF LET-THROUGH CURRENTS 

Yu. H. Dolinskii UDC 621.3.064 

The article presents a theoretical calculation of the thermophysical processes in 
the region of constriction of the streamlines of electric contacts. The problem 
is solved by a numerical method. 

Tile passage of an electric current is accompanied by the heating of the region of con- 
striction of the electric contacts. At sufficiently high temperatures attained on the con- 
tact surface, the contacts become welded together, and this welding may occur in the solid 
phase as well as in the case of melting of the material of the contacts. When the currents 
are of sufficient intensity, there may, in addition to welding, also occur deflection of the 
movable contact under the effect of electrodynamic forces and forces of thermal origin. 
Since the phenomena of welding and deflection of contacts largely determine the operational 
reliability of contact systems of electrical apparatuses, the study of these phenomena is a 
very topical task. The present article theoretically describes the processes of heating and 
welding of contacts, and it also determines the conditions under which their deflection 
occurs. 

A real conducting contact surface consists of a number of contact spots which are ran- 
domly distributed over the apparent contact surface. The higher the degree of dispersion of 
the contact microareas is, the lower is the heating of the contact surface and the higher 
are the currents at which welding and deflection of the contacts occur. From this point of 
view, the most unfavorable is single-point contact which was made the basis of the present 
examination. Following [i], we assume that the streamline passes from one contact to the 
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other through a circular contact spot with radius f. In consequence of axial symmetry the 
process of heat propagation for thermally symmetric contacts is described by the equation 

at Or [ ~ +-kO) - r  + Oz ~,(~) o~ 8~ t) (o z<AT(0) .  (1) 

The current density distribution in the region of constriction of the electric contacts, 
according to [2], is determined by the expression 

I/ i 5 2(r, z, t ) - -  i 2(t) z 2 @ ( r @ f ) z  , z ~ @ ( r - - f ) 2  o (2)  
1 6 ~ i f i r  2 z 2 + ( r  - -  f)~ ~ -  z ~ + ( r  § f)2 ~ " 

Since we are interested in the temperature distribution on the contact surface, it is 
necessary, for the sake of reducing computer time, to limit the region of integration of 
Eq. (i) by the dimensions whose increase has practically no effect on the accuracy of cal- 
culating the temperature within the limits of the contact surface. From this point of view, 
it is expedient to introduce a variable region of integration whose boundaries move according 
to the regularity 

A~ (t) = f (t) + 2a~ V F .  (3)  

Let us formulate the initial and boundary conditions of Eq. (i). Usually the passage of 
heavy let-through currents is preceded by normal operation of the contacts where, after 
lengthy passage of current through the contacts, the temperature of the contact surface dif- 
fers but slightly from the temperature of the bulk of the contact, and we may, therefore, 
adopt as initial condition that 

(r, z, O) = @o. (4) 

In consequence of axial symmetry of the problem, 

O~(O, z, t) __ O. ( 5 )  

Or 

Preliminary theoretical evaluations and experience with computer calculations showed 
that when condition (3) is fulfilled, the temperature on the end surfaces has no noticeable 
effect on the heating of the contact surface; therefore, to simplify the problem, we adopt 
the following temperature values on the boundaries of the examined region: 

(A~ (0, z, t) - ~o, (6) 

~(r, A~(t), t)--~o. ( 7 )  

According to [i], oxide films with tunneling conductivity may form on the contact surface. 
The electrons that penetrate through the film give up their excess kinetic energy to the 
anode, and part of this energy is transmitted to the cathode in consequence of the finite 
thermal conductivity of the film. In the general case there may be temperature asymmetry 
between the anode and the cathode, but when the contact surface is sufficiently large, which 
is a characteristic feature of high current contacts, then this temperature asy~m~etry is 
slight and may be disregarded [3]. An additional resistance of the oxide film is taken into 
account by introducing a surface source of heat that is uniformly distributed over the entire 
contact surface. Therefore, with z = 0, we formulate the boundary condition in the form 

O@(r, O, t! _ o(r, t) iz(t) (8) 
- -  k [o (r, o, t)] (o % r % f (t)), 

Oz 2~2p (t) 

80(r, O, t) - 0  ( r> f ( t ) ) .  (9) 
8z 

At high temperatures, plastic deformation of the contact surface predominates. Microscopic 
shift of the movable contact in the process of deformation is characterized by the combina- 
tion of two opposing processes. On the one hand, the contact elements come closer to each 
other upon deformation; on the other hand, they are removed from each other in consequence 
of the expansion of the material of the contacts when it is heated. Special measurements 
with strain gauges showed that as a rule the second process predominates, i.e., the movable 
contact is somewhat removed from the fixed one, but because the resulting shift is small, 
inertia effects may be neglected. Therefore, we write the equation of plastic deformation 
without the inertial term in the form 
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f(t) 
2= j" H[O(r, O, l)]rdr= Fv. (10) 

0 

The resulting force acting on the movable contact is: 

Fp = FR-- ~--s176 i2(t) (ln R-~-~ K ) - - F . - - F r .  (Ii) 
4~ f (t) 

In expression (ii) the external electrodynamic forces acting on the movable contact are taken 
into account by introducing the coefficient K which depends on the geometry of the conductors 
interacting with the currents. The minus sign corresponds to the case when external electro- 
dynamic forces are an obstacle to the deflection of the contacts. 

Equation (i0) has to be complemented by the ratio 

dr(t) >~0, (12) 
dt 

which indicates that the change of the contact surface in the process of plastic deformation 
is irreversible. The tunneling resistivity of the oxide film o(r, t) is determined on the 
basis of the following notions. With relatively cold contacts 

o(r ,  t) = o o. (13) 

As the contacts become hotter and the process of thermal diffusion of the atoms becomes more 
intense, diffusion resorption of the oxide films occurs. To simplify the problem we will 
assume that the tunneling resistance drops jumplike to zero when the relative concentration 
of the metal atoms on the interface of the contacts attains some value c M or when the temper- 
ature at the examined point of the contact surface attains the melting point. Thus, for the 
contact surface (r ~ f(t)) we write the relationships: 

o'(r, l) = {  fro for "O'(r, O, t)~@uandc(r, t)<c~i,  
0 for Om.~:(r, O, t ) > ~ .  or c(r, t)>~c~. (14) 

In accordance with the diffusion model of [4], the relative concentration of metal atoms 
on the interface of the contacts is determined by the expression 

i j ) _ _  y2  
c(r, t ) =  1 - -  2 s inYexp D[0 ( r ,  0, t)ldt dy. (15) 

b Ir 

The instant tr=0 for r--<fo. When fo <r <f(t), then t r is determined from the equation 

f(tr) = r. 

Let us briefly dwell on the problem of calculating the forces F~ and F T contained on 
the right-ha, ld side of expression (ll). If at the instant under examination the maximum tem- 
perature of the contact surface Om(r , 0, t)--<O~, then F~ =0. Otherwise there exists a zone 
of liquid metal on the contact surface, the zone being bounded by the melting isotherms with 
radii r~1 and r~2(r~1 <r~2). We determine the positions of the melting isotherms by solving 
the equation 

~(rn~, O, t) On (i = 1, 2). (16) 

Using Biot's formula for electromagnetic force density and integrating along the radius 
r of the contact surface within the limits of the molten zone, we obtain the expressions for 
the electromagnetic pressure in the melt and the values of the force due to the pinch effect: 

~toi z (t) In ( f + V f2 - -  /-2 

I V  ~ 2 2 2 2 r. l  r.2 0.5 ~ 2 rn, f +  l / f 2 _ _ r . ,  
Po i z (t) 1 [z 1 [2 (r~z --  r.,) --  In 

Fn = ~ [z fz f + Vf~__ r22 (18) 

The thermal force F T can be determined on the basis of the following physical notions. 
With increasing temperature, conditions are created in the melt for the liquid metal to boil 
up. The process of boiling is characterized by the formation of bubbles with saturated 
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vapor. 
of the melt, the most probable place of bubble formation is the point with maximum tempera- 
ture. A bubble forms on condition that the saturated vapor pressure exceeds the external 
pressure which in our case is composed of the sum of the electromagnetic and atmospheric 
pressures. The excess pressure of the saturated vapor is spread over the entire molten 
zone, and it creates an additional force tending to open the contacts. 

What was explained above can be formulated mathematically in the form 

Y~ = 0 for P.(~.)~Pem(r.)- i -Pat ,  (19) 

F, = a (r22 -- r~l)tP~ (@~) -- Pem(r~) -- Pat] (20) 

for PH(@m) >Pem(rm)+Pat, where 

PHo exp(  T~, ] 
P~' ( ~ )  = V ~  -? 273 #.~ -}- 273 ' 

*2 
P.o = 5,75 (mvo)3/2 

In calculating the temperature dependences of the thermophysical parameters of the 
material of the contacts we used the piecewise linear approximation of the temperature depen- 
dence of the electrical resistivity p (9). Thermal conductivity was calculated by the 
Wiedemann--Franz--Lo renz law [i] 

~(6) = L(O + 273) (21) 
~) (o) 

For multicomponent (powder metal) material the temperature dependence of the specific volu- 
metric heat capacity was calculated by the formula 

Cv(O) = ~ p~CwO) .  (22) 
11=I 

The specific heat capacities of separate components were calculated with a view to the addi- 
tional heat capacity taking into account the latent heat of fusion of the components [5] : 

( Q Y ) ~  exn[ (~-- O~)z ] (23) Cv~O)=Cvo~+~+ - ~  ,- 2o ~ . 

For the numerical solution of Eq. (i) we use the finite difference scheme of variable direc- 
tions [5]. According to this scheme, the transition from the j-th to the j +Ist time layer 
is effected in two stages in steps of 0.5T. At the first stage we use the scheme that is 
explicit with respect to z and implicit with respect to r. If we replace the differential 
operators by finite-difference analogs, we obtain a system of three-point equations for cal- 
culating the temperature on the half-layer 

JihJOi-1 h,i+'~/2 -- DiM@ih,/+l/2 + BihJOi+l ,h,f+~/2 = -- Fz~i 
(i = 2, 3 . . . . .  N~; k = 2, 3 . . . . .  N~). (24) 

The coefficients in Eq. (24) are: 

h 1. 

In the case under consideration, which is characterized by greatly monuniform heating 

Z~j u ] 2C~ 1 
2 ( i - -  1) ' D~j = - - . ~  + - ~  (a~hj + a~+~,hi), 

1 [ai+l ,k/+ K ~ ]  
B~hs= h-- ~ 2( i - -1)  ' 

2CihfO'ihY-'r, -~ ~z [bi,k§ (@i,h§ --  @ihJ) 

- -  bib# (~ih.~ - -  ~,k-l,/)] -}- 6~kiPml, 

aihff _. ~ ( "ihj ~u ~i--l,h] ) bikj = ~ ( "fh] "-~ "i,h--I,] ) 
2 ' 2 , '  

~,hj----~(~ihj), Cmj--Cv(@mJ), PmJ=P(~ihJ), N j =  [ @ ] .  

Fib j 
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We write the boundary conditions (5), (6) in finite-difference form: 

@lh, ]§  = @2h, /§  (25) 

#.vj+~,k,j+l/e = ~0 (k = 2, 3 . . . . .  Nj). (26) 

The s y s t e m  o f  e q u a t i o n s  (24) w i t h  t h e  b o u n d a r y  c o n d i t i o n s  (25)  and (26) i s  s o l v e d  b y  
the method of matching [5]. Here is a summary of the formulas for the calculation: 

a 2 h , ] + l / 2  = 1; ~2h,] - -1 /2  ~ O, (27) 

Bih,i 
ai~ 1,h.i+1/2 = , (28)  

Dih J - -  U, ik,]§ l /2Aik j  

[~i~ ~,h,i H/~ = (29) 
Dihj  - -  ~ih,]ff-I ~2AIM 

(i = 2 .  3 . . . . .  N~; k =  1, 2 . . . . .  N j ) ,  

~ih,]§ : (Zi§ ,h,]§ /2~i§ ,h,]--l~2 "@ ~i§ ,h,]@l /2 (30)  

( i = N ~ ,  N ~ - - I  . . . . .  1; k - - 1 ,  2 . . . . .  N~). 

At the second stage we use a scheme that is explicit with respect to r and implicit with 
respect to z. For calculating the temperature at the j +ist layer we have the system of 
equations 

Aihj -H/2~i ,h- -~ ,]+;  - - D i h , i + ; / 2 t ~ i h j §  -r  Bib j + ! / 2 6 i , h - -  ,i~, . . . .  Fr  = 1, 2, 3 . . . . .  N~; P~ - :  2, 3 . . . . .  ;V:). (31)  

The coefficients in Eq. (31) are determined by the expressions: 

bihj 2Ci~3 4 be ~+1 i -F b~j 
Aih, i+l /2  - t z2 ' Di~,i+~/2 - -  T ' h z ' 

bi ,h§ ,i 
Bih.]+l /2 - -  

h 2 

Fih,] ~1/2 = 2 Cihj•ih']§ _~_ 1 [ai_r. 1 k] (~-~iq]-I ,k, j@l/2-- •ik,]§ - -  a~hjOih,]§ ~- 6~hfpil~j @- AF~h,i§ 
T, [Z z ' 

2aih) aih) 
AFlh,]+I/2 . . . . . .  t~lh,i+l/2, AFih.]+l/2 = ~ i _ l , k , ] + i / 2  -d:- 

he h ~ 

_4_ )~h~ (6i+l ,h , i+l /~_--9 '~-- l .k ,]+l/~-)  ( i = 2 ,  3 . . . . .  Ni). 
2 ( i - -  1)h z 

We write the boundary conditions (7)-(9) in finite-difference form: 

~i,Nf§ ,]§ -- ~0, 

h(ri ' i+liZ({]+l) (p(ri) (i ,= 1, 2 . . . . .  N~), 

where 

(32) 

(33) 

( 1 for  ri~<fj, 
q) (Q)=  i 0 for Q > f j ,  ri ( i - - 1 ) h ;  t i + , = l j - b - T .  

The system of three-point equations (31) with the boundary conditions (32), (33) is 
solved by the method of matching. The calculations are carried out in the following sequence: 

h~if i2 (ti+l) (34)  
c~i2.1+1 = 1; 13i2.1+1 -- 2~t2f4~ilj qo (rl), 

ai,h+1 ,i+1 - -  Bih,]§ ~ /2 , (35)  
Dih,]+~ /2 - -  aih.i+~ Aik . i+l  /2 

~i.k+l,i+l = Aih,i+l/2~ih.]+'l -~ Fik,]+l/2 (36)  
Dih,]+1/2 - -  cqh,]+lAih,]+i /2 

( i - - 1 ,  2 . . . . .  Nj; k 2, 3 . . . . .  Nj), 
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Fig. i. Results of the theo- 
retical calculation of the 
process of heating and weld- 
ing contacts (f, mm; r~2, mm; 
@(0, 0, t), ~ Sc, mm2; t, 
msec). 

( i =  1, 2 . . . . .  Nj; k==TVj, N j - - I  . . . . .  1). 
(37) 

According to the calculated temperature field on the j +ist time layer we determine the 
radius of the fj+~-th contact microarea by numerically solving Eq. (i0) taking into account 
relationships (ii), (12), (16)-(20). Then we determine the value of oi,j+~ by numerically 
integrating Eq. (15). 

The area on which the contacts are welded together is calculated approximately from the 
relationships: 

S e =  ~ A S e i ,  r i ~ [ ] + J ,  (38) 
i 

2 - ~ - h ~ i  for i =  1, 
AS~i : (39)  

2~rih~i for i=/= 1. 

The weight coefficients qi are determined from the expressions: 

1 for ~ z , ] + l = 0 ,  (40) 

~]z = 2C ~ (ri, ~1+1) for  ~ i , ] + 1  = %. 

In these last relationships it ~zas accepted that diffusion resorption of the oxide film 
leads to ~Jelding at the corresponding points of the contact surface. For c(r, t) <CM it was 
accepted that the welded area is proportional to the number of singular metal bonds formed 
between the metal atoms that diffused to the interface of the contacts, and the number of 
such bonds is proportional to the square of the concentration of atoms. The described mathe- 
matical model makes it possible to describe the process of fusion welding as well as of weld- 
ing in the solid phase. 

We present the results of calculations of the process of heating and welding of powder 
metal silver--nickel contacts KMK-A30. The calculations were carried out on a computer for 
the following regularity of change of current: 

i (t) = I~ [sin (314,16 t - -  1) + 0.841 e-2~176 

With  F K = 200 N, K = 0 ,  I M = 6 4 0 0  A, t h e  h i g h e s t  t e m p e r a t u r e  a t t a i n e d  on t h e  c o n t a c t  s u r f a c e ,  
a c c o r d i n g  t o  t h e  c a l c u l a t i o n s ,  i s  762~ (~o = 2 0 ~  and t h e  s i z e  o f  t h e  w e l d  a r e a  i s  Sc = 
0.865 mm 2, which, with the welding strength of the contact material of 55 N/mm 2 [6], yields 
a welding force of 47.6 N. In an experiment with the same conditions, the force for separat- 
ing the welded contacts was 40-50 N. With a current IM=22,200 A, deflection of the contacts 
was experimentally ascertained. According to the calculations, deflection of the contacts 
occurs at I M=25,000 A (the force Fp becomes negative). The results of the numerical calcula- 
tion of the welding process of the contacts (FK =125 N, K=3, I M=43,200 A) are presented in 
Fig. i. 
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Thus, the suggested mathematical model describes with satisfactory accuracy of thermo- 
physical processes in electric contacts upon passage of let-through currents. 

NOTATION 

~, temperature; ~o, initial temperature; CV(~) , specific volumetric heat capacity; ~(~), 
thermal conductivity; p(#), electrical resistivity of the material of the contacts; ~(r, z, 
t), current density in the region of constriction; f(t), radius of contact microarea; r, z, 
space coordinates~ t, time; a~ =X/Cv, thermal diffusivity of the material of the contacts; 
AT(t) , position of the boundary of the region of integration of Eq. (I) with respect to the 
variables r, z; o(r, t), tunneling resistivity of the oxide film on the contact surface; 
H(#), hardness of the contact material; FK, contact pressure; ~o, magnetic permeability of 
air; i(t), current flo~ing through the contacts; R, radius of the broad side of the contact; 
K, coefficient taking into account the magnitude of the external electrodynamic forces; 
~max(r, 0, t), maximum temperature attained on the contact surface by the instant t; ~M, 
maximum temperature on the contact surface at the instant t; rM, radius of the isotherm with 
the maximum temperature; PH(#M) , saturated vapor pressure at the temperature #M; P~t, atmos- 
pheric pressure; m, atomic mass; v~, corrected frequency of normal atomic vibrations; kB, 
Boltzmann constant; L, Lorenz constant; Pn, volume fraction of the n-th component; (QY)n, 
latent heat of fusion of the n-th component; ~n, melting point of the principal component, 
the matrix; ~n, melting point of the n-th component; ~, parameter characterizing the degree 
of concentration of the additional heat capacity; i, k, number of the grid node by coordi- 
natesr and z; j, number of the time layer; h, step on the space coordinates; T, step in time; 
A~, thickness of the oxide film. 
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